Generalized Euler characteristic in power-bounded T-convex valued fields
نویسندگان
چکیده
منابع مشابه
Generalized Convex Set-Valued Maps
The aim of this paper is to show that under a mild semicontinuity assumption (the so-called segmentary epi-closedness), the cone-convex (resp. cone-quasiconvex) set-valued maps can be characterized in terms of weak cone-convexity (resp. weak cone-quasiconvexity), i.e. the notions obtained by replacing in the classical definitions the conditions of type ”for all x, y in the domain and for all t ...
متن کاملHYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC
Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...
متن کاملLocal maxima and the expected Euler characteristic of excursion sets of χ, F and t fields
The maximum of a Gaussian random field was used by Worsley et al. (1992) to test for activation at an unknown point in positron emission tomography images of blood flow in the human brain. The Euler characteristic of excursion sets was used as an estimator of the number of regions of activation. The expected Euler characteristic of excursion sets of stationary Gaussian random fields has been de...
متن کاملTarget Enumeration via Euler Characteristic Integrals I: Sensor Fields
We solve the problem of counting the total number of observable targets (e.g., persons, vehicles, landmarks) in a region using local counts performed by a dense field of sensors, each of which measures the number of targets nearby but not their identities nor any positional information. We formulate and solve several such problems based on the types of sensors and mobility of the targets. The m...
متن کاملFractional Generalized Random Fields on Bounded Domains
Using the theory of generalized random fields on fractional Sobolev spaces on bounded domains, and the concept of dual generalized random field, this paper introduces a class of random fields with fractional-order pure point spectra. The covariance factorization of an a-generalized random field having a dual is established, leading to a white-noise linearfilter representation, which reduces to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Compositio Mathematica
سال: 2017
ISSN: 0010-437X,1570-5846
DOI: 10.1112/s0010437x17007497